
How to Contribute to FOSS

Satya Komaragiri

The Talk
1. The Philosophy of FOSS

2. Why Should One Contribute to FOSS

3. What it Takes to be a FOSS Hacker

4. How to contribute?
 i. By coding
 ii. Without coding

5. Some examples.
 i. Fedora
 ii. OLPC

6. Questions and Answers

The "free" as is used in Free and Open Source Software (FOSS) refers
to free as in freedom.

Open distribution and open modification.

Evolution and pace.

Gaining Knowledge.

New Challenges.

Introduction to Real Life Coding.

Opportunity to Gain Expertise.

Opportunity to Experiment.

Collective Learning.

Self Assurance.

Recognition.

Communication Skills.

Market Value.

Giving Back.

Have the right attitude.

The world is full of fascinating problems
waiting to be solved.

No problem should ever have to be
solved twice.

Boredom and drudgery are evil.

Freedom is good.

Attitude is no substitute for competence.

Voluntary mutual help is good.

Be motivated to put in that effort.

Derive thrill from solving problems,
sharpening your skills, and exercising your
intelligence.

Have faith in your own learning capacity.

You are never to young to start.

Everyone can be a contributor.

A project needs people with varied
skills.

For the purpose of organizing this
talk, contribution is categorized as

i. by coding
ii. Without coding

Contributing Code :

 Contributing to an existing project.

 Starting your own project.

• Use different open source projects.

• Read a lot of code, and learn from that.

• Learn how to create and apply patches.

• Learn how to make use of GNU Autotools (most projects use them).

• Learn how to use revision control systems.

• Become familiar with open source licenses.

• Learn how to participate in public mailing lists, IRC etc. Netiquettes.

For your first project, you may want to choose a
project which:

• Uses the programming language you know.

• Is active, with recent releases.

• Already has a team of more experienced
developers.

• Has some part you think you can immediately
start. implementing without modifying the existing
code too much.

• Has active discussion lists and bug reports,
receives and implements requests for enhancement
etc.

• Learn the specific tool chain used by the project before contributing.
- the build system
- harness for unit tests
- bug tracking software
- version control system
- communication channels used by the developers and users.

• When reading code, consult include files for info on library
functions.

• Start off commenting existing code where it needs it.

• Write some documentation on the architecture of the program.

• Write your own small programs just to learn the language and
libraries.

• Experiment by making changes to your local copy of the code.

• Adhere to the maintainer's coding and formatting standards

• Start small, with one-line changes to existing programs but
gather the changes and submit as one clean-up patch.

• Test your code thoroughly before you submit it.

• Each project has its own distinct methods for and submitting
contributions. Follow them.

• Join the mailing lists. Respect and maintain discussions.

• Respond and send feedback.

• Don't get discouraged when your patches are rejected
(they will be!)

• Add features to the software rather than change in the beginning.

• Work on something no one is working on at the moment.

• Search documentation and archives before asking doubts.

• Do your own research.

• Don't give up

• Pick an existing and approved Open Source license .

• Make sure your website states that your project is "Open Source" and under which
license it is.

• Host it on free hosting sites for open source projects like SourceForge.

• Publicize it on Forums or your blog etc. To attract more contributors.

• Encourage contributions.

• Give other contributors a proper infrastructure:
• webspace for documentation,
• setting up a mailing list,
• a bug database with web interface

• a revision control system.

• Do the releases time to time.

• Do not try to invent a different license.

• If you use some components of another Open Source project, be sure to
respect its license.

• Be professional and mature in handling differences of opinions among
contributors.

• Avoid private communications on the developments.

• Contribute Quality

• Contribute Documentation

• Contribute Support

• Contribute Publicity

• Submit bug reports

• Triage

• Suggest new features, options and ways to improve
the framework

• Create artwork (icons, backgrounds, logos)

• Help maintain a web site for an Open Source
project

• Design a better user interface for your favourite
Program (GLADE and Qt Designer are great for
mocking up a new UI)

• Run usability studies

• Create validation or regression test cases

• See how a program handles streams of random data

• Get the program to compile on a new platform

• Read relevant standards and make sure the program follows them

• Help write good documentation

• Translate the documentation (and program text)
into another language

• Read existing documentation, follow the examples
and make corrections

• Create diagrams, screen-shots, and graphics
for documentation

• Develop spelling and grammar style conventions
for documentors

• Build a glossary of technical terms

• Convert documentation into more useful formats.

• Answer questions on forums, mailing
lists or IRC channels

• Contribute to (or start) an online
support group

• Help other people learn how to
use the program (or programming library)

• Maintain a FAQ or HOWTO document

• Buy a Free Software product, or
associated products

• Buy products from companies that
Support Free Software

• Package the application for a particular Linux
distribution (or other OS)

• Convince people to chose Open Source products
when possible

• Write articles, reviews, critiques and books

• Write about new ways of using an Open Source
program

• Write up case studies of successful Open Source
implementations

• Help organize LUG events, including InstallFests,
BugFests, and DocFests

• Provide training to new Linux users

Content writer
People person
Translator
OS developer
Designer
Web developer and administrator

Examples: The Fedora Project

Activities

Epistemological impact

Fun

Quality

Sugarized

FOSS

Extensible

Uniqueness

Expectations

Discoverable

Core systems support

Examples: OLPC

